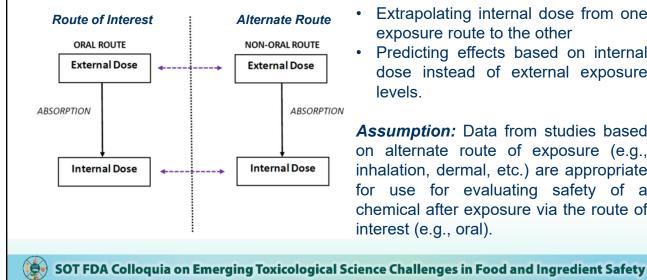
SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

Applying Route-to-Route Extrapolation for Food Ingredients: Considerations & Case Examples


Shruti V. Kabadi, PhD Division of Food Contact Substances Office of Food Additive Safety Center for Food Safety and Applied Nutrition/ US FDA Shruti.Kabadi@fda.hhs.gov

1

Conflict of Interest Statement

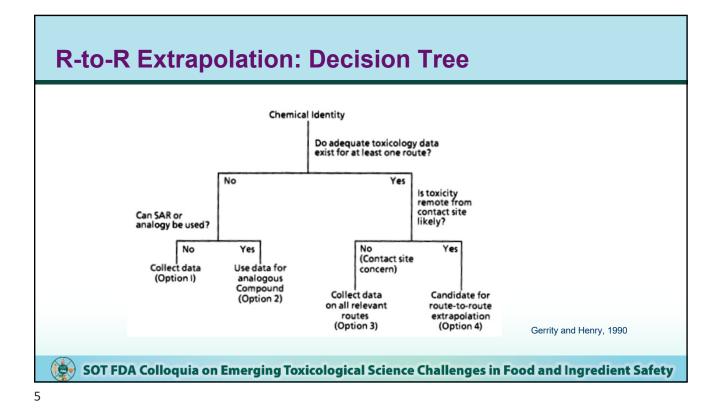
All views expressed are those of the speaker and do not reflect the views of the FDA or its policies.

R-to-R Extrapolation

 Extrapolating internal dose from one exposure route to the other

• Predicting effects based on internal dose instead of external exposure levels.

Assumption: Data from studies based on alternate route of exposure (e.g., inhalation, dermal, etc.) are appropriate for use for evaluating safety of a chemical after exposure via the route of interest (e.g., oral).

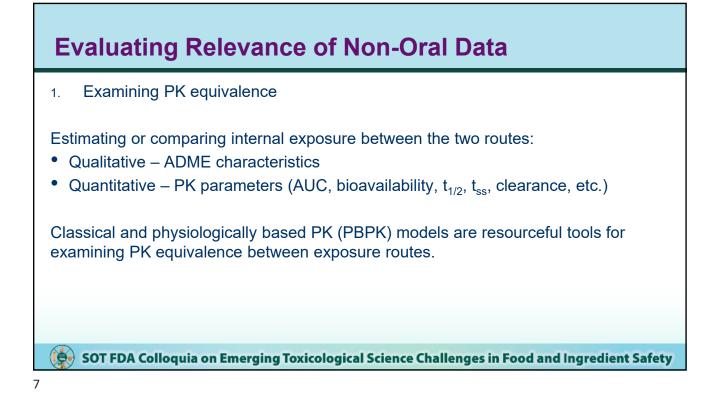

R-to-R Extrapolation: Factors

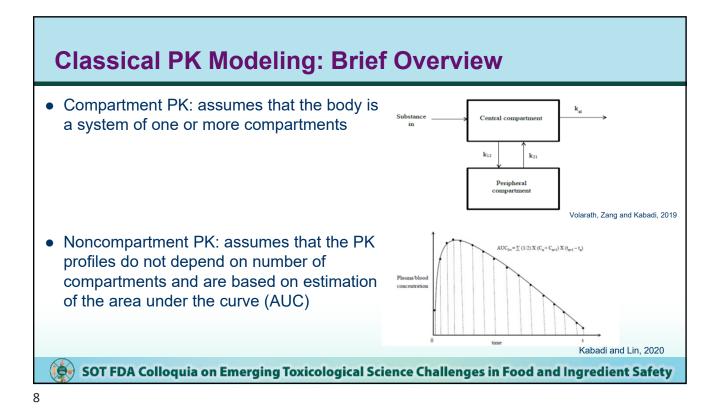
- Physicochemical characteristics: Molecular size, molecular weight, partition coefficient, pKa, solubility, volatility, etc.
- Dosing: Dosing rate, frequency, duration, method of administration, etc.
- Exposure: Contact site, contact duration, contact area, blood flow rate, diffusion barriers

Pharmacokinetics (PK): Absorption, distribution, metabolism (hepatic versus extrahepatic) and elimination

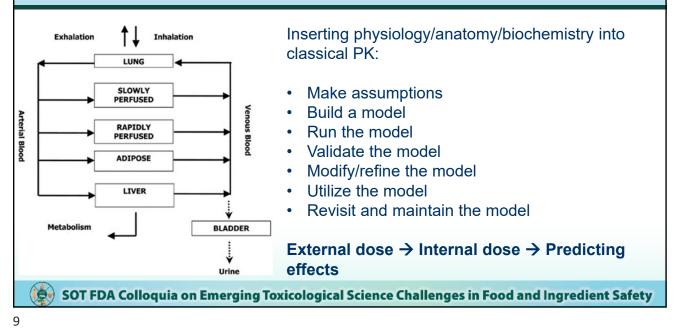
💓 SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

3

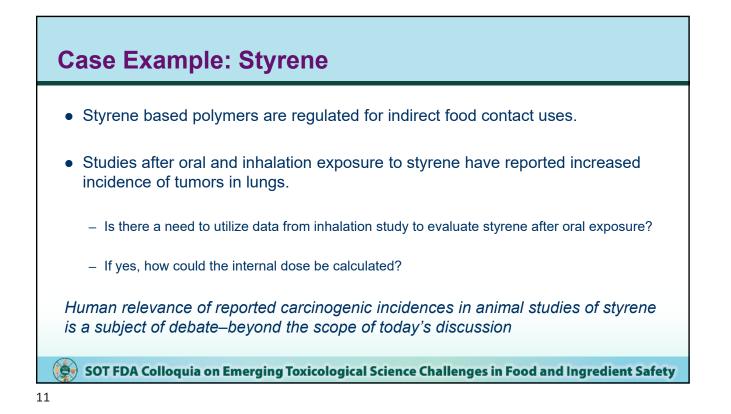

R-to-R Extrapolation for Food Ingredients


The safety assessment of food ingredients is performed primarily based on oral toxicity data.

Adequate toxicity data from oral exposure studies may not be available or may not be of adequate quality to evaluate the safety of some food ingredients.


R-to-R approach enables utilizing data from non-oral (e.g., inhalation) studies for evaluating effects after oral exposure to a food ingredient.

The first step is to evaluate the relevance of data from non-oral studies for evaluating safety of a chemical after oral exposure–*case-by-case*

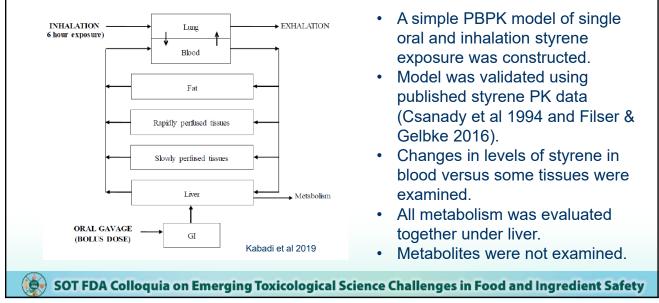


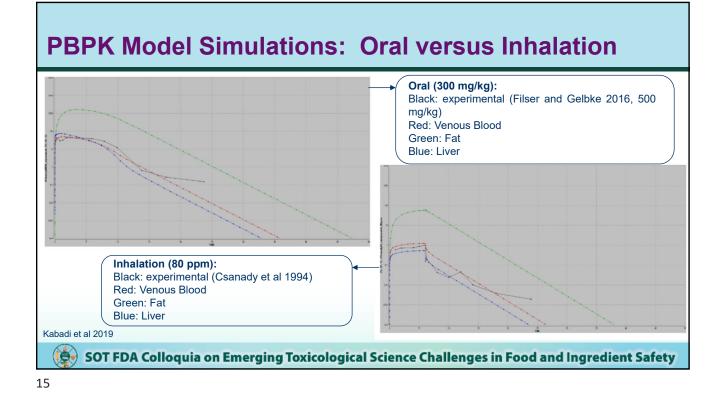
Evaluating Relevance of Non-Oral Data (continued)

- 2. Determining toxicological relevance
- Are the effects due to contact (portal of entry) or systemic exposure?
- Are there differences in the type or severity of observed or expected effects?
- Are the effects potentially related to the internal dose?
- Are there any differences in potential mechanisms of action?

Styrene: Comparing PK between Oral and Inhalation Exposure Routes

- Absorption: 70% (inhalation) and 100% (oral)
- Metabolism: Primarily metabolized by CYPs in the liver and lungs
- Biological half-life: 8-9 hours; (first phase with a $t_{1/2}$ of 0.6 hours followed by a second slow phase with a $t_{1/2}$ of 12-13 hours)
- Several PBPK models published on inhalation styrene (including styrene-7,8-oxide (STO)) exposure over the years




Styrene: Compare Effects Reported in Available Carcinogenicity Studies

Species/strainMale and female B6C3F1 miceMale and female CD-1 miceGroup size50 mice/group/sex60 mice/group/sexExposure levels0, 150 and 300 mg/kg bw/d0, 20, 40, 80 and 160 ppm (whole body)Exposure duration78 weeks (5d/week)104 weeks (6h/d; 5d/week)Carcinogenic incidences (statistically significant)Bronchioloalveolar adenoma/carcinoma (9/43) vs control (0/20) in males at 300 mg/kg bw/dBronchioloalveolar adenoma/carcinoma- 35/50 vs 15/50 in males at 40 ppm, and 16/50 vs 6/50 in females at 20 ppm	Exposure Route	Oral (NCI, 1979)	Inhalation (Cruzan et al. 2001)
Exposure levels0, 150 and 300 mg/kg bw/d (v/v; in corn oil)0, 20, 40, 80 and 160 ppm (whole body)Exposure duration78 weeks (5d/week)104 weeks (6h/d; 5d/week)Carcinogenic incidences (statisticallyBronchioloalveolar adenoma/carcinoma (9/43) vs control (0/20) in males at 300Bronchioloalveolar adenoma/carcinoma- 35/50 vs 15/50 in males at 40 ppm, and	Species/strain	Male and female B6C3F1 mice	Male and female CD-1 mice
(v/v; in corn oil)body)Exposure duration78 weeks (5d/week)104 weeks (6h/d; 5d/week)Carcinogenic incidences (statisticallyBronchioloalveolar adenoma/carcinoma (9/43) vs control (0/20) in males at 300Bronchioloalveolar adenoma/carcinoma- 35/50 vs 15/50 in males at 40 ppm, and	Group size	50 mice/group/sex	60 mice/group/sex
Carcinogenic incidencesBronchioloalveolar adenoma/carcinoma (9/43) vs control (0/20) in males at 300Bronchioloalveolar adenoma/carcinoma- 35/50 vs 15/50 in males at 40 ppm, and	Exposure levels		
incidences adenoma/carcinoma (9/43) vs adenoma/carcinoma- 35/50 vs (statistically control (0/20) in males at 300 15/50 in males at 40 ppm, and	Exposure duration	78 weeks (5d/week)	104 weeks (6h/d; 5d/week)
	incidences (statistically	adenoma/carcinoma (9/43) vs control (0/20) in males at 300	adenoma/carcinoma- 35/50 vs 15/50 in males at 40 ppm, and

13

PBPK Modeling of Styrene: Oral and Inhalation

Internal Exposure Comparison: Oral versus Inhalation

Exposure route	AUC _{0-24 (observed)} (mgl ⁻¹ h)	AUC _{0-24 (predicted)} (mgl ⁻¹ h)	AUC _(obs/predicted)
Inhalation (80 ppm)	4.57	7.68	0.60
Inhalation (600 ppm)	130.08	183.56	0.71
Oral (500 mg/kg)	357.79	809.58	0.44

PBPK Modeling of Styrene: Implications

- Internal exposure increased with an increase in external exposure; however, metabolism potentially showed saturation at higher exposure levels, irrespective of the exposure route.
- Styrene partitioned into fat more than other tissues across exposure routes.
- The concentrations of styrene in blood and all evaluated tissues declined within 24 hours.

Inhalation data could be used for evaluating styrene after oral exposure.

SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

17

Converting Inhalation Exposure into Equivalent Internal Dose

- Inhalation exposure-reported as ppm in air
- Oral exposure-evaluated as equivalent daily dose (mg/kg bw/d)

Converting ppm into equivalent internal dose (based on principles of inhalation dosimetry with inclusion of physiological and PK parameters):

- 1. Reported inhalation exposure (ppm) \rightarrow Exposure (mg/ml)
- 2. Adjusting Exposure for duration \rightarrow Time-weighted exposure (mg/ml)
- 3. Time-weighted exposure (mg/ml) \rightarrow Equivalent daily dose (mg/kg bw/d)
- 4. Accounting for systemic absorption \rightarrow Equivalent internal dose (mg/kg bw/d)

This estimated equivalent internal dose could be utilized for calculating a POD.

Steps for Converting Inhalation Exposure to Equivalent Internal Dose

- 1. Exposure (mg/ml) = MW X (1/24.45) X [ppm estimate X (1L/10⁶L)]
- 2. Time-weighted Exposure (mg/ml) = Exposure (mg/ml) X (6 hr/24 hr) X (5d/7d)
- 3. Equivalent Daily Dose (mg/kg bw/d) = Time-weighted Exposure (mg/ml) V AVR (ml/min/kg bw) X (60 min/1hr) X (24hr/d)
- 4. Equivalent Internal Dose (mg/kg bw/d) = F (%) X Equivalent Daily Dose (mg kg bw/d)

SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

19

Equivalent Internal Dose Estimates for Inhalation Styrene Exposure

Inhalation Exposure (ppm)	Equivalent Internal Dose (mg/kg bw/d)					
20	17.78					
40	35.56					
80	71.12					
160	142.25					
SOT FDA Colloquia on Emerging Toxicolog	ical Science Challenges in Food and Ingredient Safet					

Conversion of Inhalation Exposure to Equivalent Internal Dose: Some Considerations

- This conversion protocol is useful for calculating equivalent internal dose based on inhalation data for volatile solvents (i.e., substances with high vapor pressure).
- It is not applicable to substances that may not fully vaporize upon inhalation exposure.
- It is also not applicable for substances that demonstrate wash in-wash out effect upon inhalation exposure.
- Appropriate physiological values, such as species-specific alveolar ventilation rate parameters, are required for this conversion.

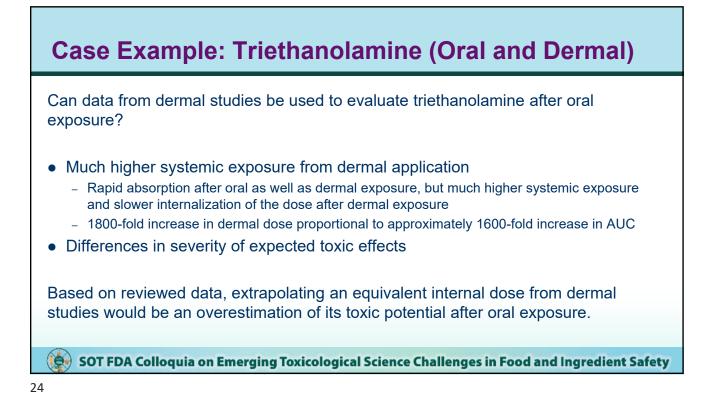
SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

21

Case Example: Cobalt Salts (Oral and Inhalation)

Comparing PK profiles of some cobalt salts between oral and inhalation exposure routes

	Inhalation (Foster et al., 1988)		Oral (Christensen et al., 1993)	
Particle Size (Inhalation) /Sex (Oral)	$0.8 \ \mu m$ (male only)	$1.7 \ \mu m$ (male only)	Male	Female
Mean half-life (t _{1/2} , days)	150-250		-	-
Fractional deposition in the lungs (%)	52	78	-	-
Mean urine excretion	0.327*		9.60±6.06 (µmol/L)	30.14±9.51(µmol/L)
Adjusted for creatinine (µmol/µmol)	-	-	1.35±0.94	3.02±2.21
Mean fecal excretion	0.28*		-	-
Blood concentration (µmol/L)	-	-	3.46±2.96	11.18±5.00
Translocation rate (per participant)	0.35±0.07*	0.21±0.07*	-	-
	0.45±0.07*	0.39±0.15*	-	-
Mechanical clearance rate (per participant)	0.04±0.05*	0.07±0.07*	-	-
	0.20±0.10*	0.10±0.09*	-	-
				Hung, Smith and Ka


Cobalt Salts: Conclusions

- PK profiles of cobalt and its salts vary with differences in physicochemical properties, such as particle size, ionic charge, solubility, etc.
- Oral bioavailabilities of cobalt chloride and cyanocobalamin are low (approx. 2%). Sufficient inhalation PK data are not available to calculate an estimate for systemic absorption after inhalation exposure, however, systemic absorption after is expected to be low.
- PK profiles of cobalt oxides (II, III) differ between oral and inhalation exposure routes, based on parameters reviewed thus far.
- Additional factors, such as sex may affect PK profiles of cobalt salts, which have not been evaluated yet.

Based on the reviewed information, inhalation data cannot be used for evaluating cobalt salts after oral exposure.

SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

23

R-to-R for Food Ingredients (Summary)

Evaluating food ingredients based on non-oral studies involves:

- Examining PK equivalence
- Determining toxicological relevance

For estimating POD using inhalation data, equivalent internal dose (mg/kg bw/d) can be calculated based on principles of inhalation dosimetry and by incorporating species-specific alveolar ventilation rates and systemic absorption.

SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

25

R-to-R Extrapolation: Challenges

- Portal of entry effects
- Modes of action
- Effects of factors, such as sex, age which may introduce variability on PK
- Inconsistencies in R-to-R methodologies used by different organizations
- Case-by-case for food ingredients

References

- 1. Gerrity TR, Henry CJ (1990). Principles of route-route extrapolation for risk assessment. Elsevier, 1-12, New York, NY
- Volarath P, Zang Y, Kabadi SV (2019). Application of computational methods for the safety assessment of food ingredients In Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science, ed. H Hong: Springer
- 3. Kabadi SV, Lin Z (2020). Introduction to Classical Pharmacokinetics In *Physiologically Based Pharmacokinetic (PBPK) Modeling: Methods and Applications in Toxicology and Risk Assessment*, ed JW Fisher, J Gearhart and Z Lin: Elsevier
- 4. Vodicka P, Koskinen M, Naccarati A, Oesch-Bartlomowicz B, Vodicka L, Hemminki K, Oesch F (2006), Drug Metab Rev
- 5. NCI (1979) Bioassay of styrene for possible carcinogenicity. Report No.: NCI-CG-TR-185
- Cruzan G, Cushman JR, Andrews LS, Granville GC, Johnson KA, Bevan C, Hardy CJ, Coombs DW, Mullins PA, Brown WR (2001). Chronic toxicity/oncogenicity study of styrene in CD-1 mice by inhalation exposure for 104 weeks. J App/Toxicol
- Kabadi SV, Zang Y, Fisher JW, Smith N, Whiteside C, Aungst J (2019). Food ingredient safety evaluation: utility and relevance of toxicokinetic methods. *Toxicol Appl Pharmacol*
- 8. Csanady GA, Mendrala AL, Nolan RJ, Filser JG (1994). A physiologic pharmacokinetic model for styrene and styrene-7,8-oxide in mouse, rat and man. ArchToxicol
- Filser JG, Gelbke HP (2016). An evaluation of concentrations of styrene-7,8-oxide in rats and humans resulting from exposure to styrene or styrene-7,8-oxide and potential genotoxicity. *Toxicol Lett*
- 10. Foster PP, Pearman I, Ramsden D (1988). An interspecies comparison of the lung clearance of inhaled monodisperse cobalt oxide particles- Part II: Lung clearance of inhaled cobalt oxide in man. J Aerosol Sci
- 11. Christensen JM, Poulsen OM, Thomsen M (1993). A short-term cross-over study on oral administration of soluble and insoluble cobalt compounds: sex differences in biological levels. *In Arch Occup Environ Health*
- 12. Hung B, Smith N, Kabadi SV (2019). Comparative toxicokinetic analysis of available inhalation and oral data on cobalt and its salts. Annual SOT Meeting

SOT FDA Colloquia on Emerging Toxicological Science Challenges in Food and Ingredient Safety

27

Acknowledgements

FDA Collaborators:

- Dr. Jeffrey Fisher (NCTR)
- Dr. Jason Aungst (CFSAN)
- Dr. Patra Volarath (CFSAN)
- Dr. Janet Zang (CFSAN)
- Dr. Antonia Mattia (CFSAN)
- Dr. William Roth (CFSAN)

Former ORISE/JIFSAN Fellows:

Dr. Nikki Smith (Department of Navy) Mr. Benjamin Hung (University of Maryland)